Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7909, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193725

RESUMO

The inherent nonlinear magnetization dynamics in spintronic devices make them suitable candidates for neuromorphic hardware. Among spintronic devices, spin torque oscillators such as spin transfer torque oscillators and spin Hall oscillators have shown the capability to perform recognition tasks. In this paper, with the help of micromagnetic simulations, we model and demonstrate that the magnetization dynamics of a single spin Hall oscillator can be nonlinearly transformed by harnessing input pulse streams and can be utilized for classification tasks. The spin Hall oscillator utilizes the microwave spectral characteristics of its magnetization dynamics for processing a binary data input. The spectral change due to the nonlinear magnetization dynamics assists in real-time feature extraction and classification of 4-binary digit input patterns. The performance was tested for the classification of the standard MNIST handwritten digit data set and achieved an accuracy of 83.1% in a simple linear regression model. Our results suggest that modulating time-driven input data can generate diverse magnetization dynamics in the spin Hall oscillator that can be suitable for temporal or sequential information processing.

2.
J Phys Condens Matter ; 34(15)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35045399

RESUMO

Using the analysis of the temperature and magnetic field dependence of the magnetization (M) measured in the temperature range of 1.5 K to 400 K in magnetic fields up to 250 kOe, the magnetic field-temperature (H-T) phase diagram, tricritical point and exchange constants of the antiferromagnetic MnTa2O6are determined in this work. X-ray diffraction/Rietveld refinement and x-ray photoelectron spectroscopy of the polycrystalline MnTa2O6sample verified its phase purity. Temperature dependence of the magnetic susceptibilityχ(=M/H) yields the Néel temperatureTN= 5.97 K determined from the peak in the computed ∂(χT)/∂TvsTplot, in agreement with theTN= 6.00 K determined from the peak in theCPvsTdata. The experimental data ofCPvsTnearTNis fitted toCP=A|T-TN|-αyielding the critical exponentα= 0.10(0.13) forT>TN(T 25 K fits well with the modified Curie-Weiss law:χ=χ0+C/(T-θ) withχ0= -2.12 × 10-4emu mol-1 Oe-1yieldingθ= -24 K, andC= 4.44 emu K mol-1 Oe-1, the later giving magnetic momentµ= 5.96 µBper Mn2+ion. This yields the effective spinS= 5/2 andg= 2.015 for Mn2+, in agreement withg= 2.0155 measured using electron spin resonance spectroscopy. Using the magnitudes ofθandTNand molecular field theory, the antiferromagnetic exchange constantsJ0/kB= -1.5 ± 0.2 K andJ⊥/kB= -0.85 ± 0.05 K for Mn2+ions along the chainc-axis and perpendicular to thec-axis respectively are determined. TheχvsTdata when compared to the prediction of a Heisenberg linear chain model provides semiquantitative agreement with the observed variation. TheH-Tphase diagram is mapped using theM-Hisotherms andM-Tdata at differentHyielding the tricritical pointTTP(H,T) = (17.0 kOe, 5.69 K) separating the paramagnetic, antiferromagnetic, and spin-flop phases. At 1.5 K, the experimental magnitudes of the exchange fieldHE= 206.4 kOe and spin-flop fieldHSF= 23.5 kOe yield the anisotropy fieldHA= 1.34 kOe. These results for MnTa2O6are compared with those reported recently in the isostructural MnNb2O6.

3.
Nano Lett ; 21(23): 10070-10075, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34802245

RESUMO

Thin film optical coatings have a wide range of industrial applications from displays and lighting to photovoltaic cells. The realization of electrically tunable thin film optical coatings in the visible wavelength range is particularly important to develop energy efficient and dynamic color filters. Here, we experimentally demonstrate dynamic color generation using electrically tunable thin film optical coatings that consist of two different phase change materials (PCMs). The proposed active thin film nanocavity excites the Fano resonance that results from the coupling of a broadband and a narrowband absorber made up of phase change materials. The Fano resonance is then electrically tuned by structural phase switching of PCM layers to demonstrate active color filters covering the entire visible spectrum. In contrast to existing thin film optical coatings, the developed electrically tunable PCM based Fano resonant thin optical coatings have several advantages in tunable displays and active nanophotonic applications.

4.
Acc Chem Res ; 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34339603

RESUMO

ConspectusIn this Account, we describe the challenges and promising applications of transmission electron microscopy (TEM) imaging and spectroscopy at cryogenic temperatures. Our work focuses on two areas of application: the delay of electron-beam-induced degradation and following low-temperature phenomena in a continuous and variable temperature range. For the former, we present a study of LiMn1.5Ni0.5O4 lithium ion battery cathode material that undergoes electron beam-induced degradation when studied at room temperature by TEM. Cryogenic imaging reveals the true structure of LiMn1.5Ni0.5O4 nanoparticles in their discharged state. Improved stability under electron beam irradiation was confirmed by following the evolution of the O K-edge fine structure by electron energy-loss spectroscopy. Our results demonstrate that the effect of radiation damage on discharged LiMn1.5Ni0.5O4 was previously underestimated and that atomic-resolution imaging at cryogenic temperature has a potential to be generalized to most of the Li-based materials and beyond. For the latter, we present two studies in the imaging of low-temperature phenomena on the local scale, namely, the evolution of ferroelectric and ferromagnetic domains walls, in BaTiO3 and Y3Fe5O12 systems, respectively, in a continuous and variable temperature range. Continuous imaging of the phase transition in BaTiO3, a prototypical ferroelectric system, from the low-temperature orthorhombic phase continuously up to the centrosymmetric high-temperature phase is shown to be possible inside a TEM. Similarly, the propagation of domain walls in Y3Fe5O12, a magnetic insulator, is studied from ∼120 to ∼400 K and combined with the application of a magnetic field and electrical current pulses to mimic the operando conditions as in domain wall memory and logic devices for information technology. Such studies are promising for studying the pinning of the ferroelectric and magnetic domains versus temperature, spin-polarized current, and externally applied magnetic field to better manipulate the domain walls. The capability of combining operando TEM stimuli such as current, voltage, and/or magnetic field with in situ TEM imaging in a continuous cryogenic temperature range will allow the uncovering of fundamental phenomena on the nanometer scale. These studies were made possible using a MEMS-based TEM holder that allowed an electron-transparent sample to be transferred and electrically contacted on a MEMS chip. The six-contact double-tilt holder allows the alignment of the specimen into its zone axis while simultaneously using four electrical contacts to regulate the temperature and two contacts to apply the electrical stimuli, i.e., operando TEM imaging. This Account leads to the demonstration of (i) the high-resolution imaging and spectroscopy of nanoparticles oriented in the desired [110] zone-axis direction at cryogenic temperatures to mitigate the electron beam degradation, (ii) imaging of low-temperature transitions with accurate and continuous control of the temperature that allowed single-frame observation of the presence of both the orthorhombic and tetragonal phases in the BaTiO3 system, and (iii) magnetic domain wall propagation as a function of temperature, magnetic field, and current pulses (100 ns with a 100 kHz repetition rate) in the Y3Fe5O12 system.

5.
J Phys Condens Matter ; 33(34)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34102622

RESUMO

This work presents the magnetic field-temperature (H-T) phase diagram, exchange constants, specific heat (CP) exponents and magnetic ground state of the antiferromagnetic MnNb2O6polycrystals. Temperature dependence of the magnetic susceptibilityχ(=M/H) yields the Néel temperatureTN= 4.33 K determined from the peak in the computed ∂(χT)/∂TvsTplot in agreement with the transition in theCPvsTdata atTN= 4.36 K. The experimental data ofCPvsTnearTNis fitted toCP=A|T-TN|-αyielding the critical exponentα= 0.12 (0.15) forT>TN(T 50 K toχ=χ0+C/(T-θ) withχ0= -1.85 × 10-4emu mol-1Oe-1yieldsθ= -17 K, andC= 4.385 emu K mol-1Oe-1, the latter giving magnetic momentµ= 5.920µBper Mn2+ion. This confirms the effective spinS= 5/2 andg= 2.001 for Mn2+and the dominant exchange interaction being antiferromagnetic in nature. Using the magnitudes ofθandTNand molecular field theory (MFT), the exchange constantsJ0/kB= -1.08 K for Mn2+ions along the chainc-axis andJ⊥/kB= -0.61 K as the interchain coupling perpendicular toc-axis are determined. These exchange constants are consistent with the expectedχvsTvariation for the Heisenberg linear chain. TheH-Tphase diagram, mapped using theM-Hisotherms andM-Tdata at differentHcombined with the reported data of Nielsenet al, yields a triple-pointTTP(H,T) = (18 kOe, 4.06 K). The spin-flopped state aboveTTPand the forced ferromagnetism forH> 192 kOe are used to estimate the anisotropy energyHA≈ 0.8 kOe.

6.
Nano Lett ; 21(9): 4044-4050, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33900781

RESUMO

The realization of electrically tunable plasmonic resonances in the ultraviolet (UV) to visible spectral band is particularly important for active nanophotonic device applications. However, the plasmonic resonances in the UV to visible wavelength range cannot be tuned due to the lack of tunable plasmonic materials. Here, we experimentally demonstrate tunable plasmonic resonances at visible wavelengths using a chalcogenide semiconductor alloy such as antimony telluride (Sb2Te3), by switching the structural phase of Sb2Te3 from amorphous to crystalline. We demonstrate the excitation of a propagating surface plasmon with a high plasmonic figure of merit in both amorphous and crystalline phases of Sb2Te3 thin films. We show polarization-dependent and -independent plasmonic resonances by fabricating one and two-dimensional periodic nanostructures in Sb2Te3 thin films, respectively. Moreover, we demonstrate electrically tunable plasmonic resonances using a microheater integrated with the Sb2Te3/Si device. The developed electrically tunable Sb2Te3-based plasmonic devices could find applications in the development of active color filters.

7.
Adv Mater ; 33(15): e2006926, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33690921

RESUMO

The change of the phase of light under the evolution of a nanomaterial with time is a promising new research direction. A phenomenon directly related to the sudden phase change of light is the Goos-Hänchen (G-H) shift, which describes the lateral beam displacement of the reflected light from the interface of two media when the angles of incidence are close to the total internal reflection angle or Brewster angle. Here, an innovative design of lithography-free nanophotonic cavities to realize electrically tunable G-H shifts at the singular phase of light in the visible wavelengths is reported. Reversible electrical tuning of phase and G-H shifts is experimentally demonstrated using a microheater integrated optical cavity consisting of a dielectric film on an absorbing substrate through a Joule heating mechanism. In particular, an enhanced G-H shift of 110 times of the operating wavelength at the Brewster angle of the thin-film cavity is reported. More importantly, electrically tunable G-H shifts are demonstrated by exploiting the significant tunable phase change that occurs at the Brewster angles, due to the small temperature-induced refractive index changes of the dielectric film. Realizing efficient electrically tunable G-H shifts with miniaturized heaters will extend the research scope of the G-H shift phenomenon and its applications.

8.
Nano Lett ; 20(11): 8305-8311, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33079550

RESUMO

Precise control of light is indispensable to modern optical communication devices especially as the size of such devices approaches the subwavelength scale. Plasmonic devices are suitable for the development of these optical devices due to the extreme field confinement and its ability to be controlled by tuning the carrier density at the metal/dielectric interface. Here, an electro-ionic controlled plasmonic device consisting of Au/graphene/ion-gel is demonstrated as an optical switch, where an external electric field modulates the real part of the electrical conductivity. The graphene layer enhances charge penetration and charge separation at the Au/graphene interface resulting in an increased photoinduced voltage. The ion-gel immobilized on the Au/graphene further enables the electrical tunability of plasmons which modulates the intensity of the reflected laser light. This work paves the way for developing novel plasmonic electro-optic switches for potential applications such as integrated optical devices.

9.
ACS Appl Mater Interfaces ; 12(37): 41802-41809, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32819087

RESUMO

The atomically flat interface of the Y3Fe5O12 (YIG) thin film and the Gd3Ga5O12 (GGG) substrate plays a vital role in obtaining the magnetization dynamics of YIG below and above the anisotropy field. Here, magnetoimpedance (MI) is used to investigate the magnetization dynamics in fully epitaxial 45 nm YIG thin films grown on the GGG (001) substrates using a copper strip coil in the MHz-GHz frequency region. The resistance (R) and reactance (X), which are components of impedance (Z), allow us to probe the absorptive and dispersive components of the dynamic permeability, whereas a conventional spectrometer only measures the field derivative of the power absorbed. The distinct excitation modes arising from the resonance in the uniform and dragged magnetization states of YIG are respectively observed above and below the anisotropy field. The magnetodynamics clearly shows the visible dichotomy between two resonant fields below and above the anisotropy field and its motion as a function of the direction of the applied magnetic field. A low value of a damping factor of ∼4.7 - 6.1 × 10-4 is estimated for uniform excitation mode with an anisotropy field of 65 ± 2 Oe. Investigation of below and above anisotropy field-dependent magnetodynamics in the low-frequency mode can be useful in designing the YIG-based resonators, oscillators, filters, and magnonic devices.

10.
ACS Photonics ; 6(7): 1610-1617, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31355301

RESUMO

The generalized Brewster angle (GBA) is the incidence angle at polarization by reflection for p- or s-polarized light. Realizing an s-polarization Brewster effect requires a material with magnetic response, which is challenging at optical frequencies since the magnetic response of materials at these frequencies is extremely weak. Here, we experimentally realize the GBA effect in the visible using a thin-film absorber system consisting of a dielectric film on an absorbing substrate. Polarization by reflection is realized for both p- and s-polarized light at different angles of incidence and multiple wavelengths. We provide a theoretical framework for the generalized Brewster effect in thin-film light absorbers. We demonstrate hydrogen gas sensing using a single-layer graphene film transferred on a thin-film absorber at the GBA with ∼1 fg/mm2 aerial mass sensitivity. The ultrahigh sensitivity stems from the strong phase sensitivity near the point of darkness, particularly at the GBA, and the strong light-matter interaction in planar nanocavities. These findings depart from the traditional domain of thin films as mere interference optical coatings and highlight its many potential applications including gas sensing and biosensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...